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An irreversible character of the intramolecular vibrational energy redistribution (IVR) is discussed, and a
novel definition of entropy of molecular vibration is proposed. A generalized master equation having a non-
Markovian memory kernel for the occupation probability (squared modulus of the probablity amplitude) is
derived from the Schidinger equation. Long-time behavior of the occupation probability is analyzed by the
renormalization-group method. The occupation probability exhibits secular motion when recurrences of the
memory kernel are suppressed by an exponential-damping factorTéne secular motion obeys a Markovian
master equation and represents quasi-irreversible dynamics, which is embedded in the reversible quantum
dynamics and caused by the suppression of the recurrences. Transition rates of the quasi-irreversible dynamics
are discussed in connection with molecular absorption spectra.e-tlependence of the transition matrix
clarifies the mechanism giving rise to the quasi-irreversibility. The irreversible character of the secular dynamics
can be utilized to estimate the entropy, which indicates the extent of the IVR proceeded up to a given time.

1. Introduction wherep(t) is the occupation probablity of a quantum state or

. . of a group of quantum states:
The study of molecular reaction dynamics has shown that

the energy transfer among vibrational degrees of freedom takes n
a crucial role in dynamical processes, such as chemical reaction —
lynamical proces . pt) = 10O (2
and molecular dissociation, particularly when polyatomic mol- F=
ecules are involve#? This energy transfer is called intramo-

lecular vibrational energy redistribution (IVR) and has long been Here, |W(t)Ois the wave function of the system afjgtClis a
a target of many experimental and theoretical stugfiés. basis state, whergis the index of group ang specifies the
The simplest classical picture of IVR is uniform distribution member of group. Remacle and Levine discussed the case in
of the energy among the vibrational degrees of freedom. In whichp; = |W(0)|W(t)J. The entropy of Remacle and Levine
this sense, IVR can be interpreted as randomization caused inoscillates in accordance with the oscillation |G (0)| W (t) R
the approach to the microcanonical equilibrium. From the as shown in section 5 of the present paper. This oscillation is
quantum mechanical point of view, IVR is a diffusion of quantum dephasing caused by motion of a wave packet traveling
probablity amplitudes over the quantum states under conservato and fro in the configuration space.
tion of the total energy. The wave function is continuously  The purpose of the present study is to define a measure of
deformed in the course of IVR and finally acquires a very |VR that does not increase with the reversible dephasing but
complicated shape. In this context, IVR has often been does increase monotonically with the irreversible approach to
discussed in connection with quantum ch&ds. Several  the equilibrium. For this purpose we need to extract irrevers-
attempts to define a measure that indicates the complexity of iility from the dynamics ofy(t) and to clarify the condition to
wave function have been reporte&d! The main problem in encounter the irreversibility.
these studies originates from the fact that IVR is strictly  |rreversible dynamics in molecular processes, such as internal
reversible pure-state dynamics. In consequence, the von Neutonversion and intersystem crossing, has successfully been
mann entropy of the pure-state densty operator is always zerogescribed by the theory of radiationless transitit?. The basic
and not very useful as a measure of IVR. Heller proposed a assumption of the latter theory is the existence of densely located
measure on the basis of a volume of the classical phase spacenergy levels giving rise to a quasicontinuum. This assumption
swept by the distribution function up to a given tifheAlthough is equivalent to disregard of recurrences. It is valid when the
the measure of Heller is a good measure for ergodicity, it does recurrence time is much longer than the time scale of chemical
not represent the complexity of wave function. On the other interest. A nonstationary state prepared, for example, by a
hand, Remacle and Levine proposed a kind of relative entropy pulsed-laser excitation undergoes exponential decay when it is
on the basis of the maximum entropy formali$mThe relative coupled with a quasicontinuum. In the present paper we name

entropy (or conditional entropy) is defined as such decay “quasi-irreversibility” because it is the irreversibility
caused by the disregard of recurrences. Recent studies have
pj(t) shown that IVR sometimes consists of several different molec-
St) = —ij(t) InT (2) ular motions, each having a different time scalé.2> The
: 4

i dynamics of the longest time scale can be regarded as irrevers-
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ible decay like radiationless transition upon disregard of the n

reccurences. In this case, extraction of quasi-irreversible P = Z|jp¢|]]ﬂu| 3)
dynamics can be achieved by disregarding the recurrences of =

the longest time scale.

Irreversible time evolution can be described by master

equations. It is known that the relative entropy increases L . ) g .
monotonically when the time evolution of(t) obeys a Mori discussed equations of motion for expectation values in
1 i - iof0,41 i inti
Markovian master equation satisfying the detailed balance .h's W?” known forma!lsnf. Here, we obey h's prescription, .
condition?* The Markovian master equation is a fundamental in which we need an inner product and a projection operator in

tool for describing rate processes in macroscopic chemical El_hre A}'Suvglr? dst[?\eéce'ro'ev\ﬁ'gr?fénirtgg rln;ser product A#) =
kineticg and photochemistri? All these chemical processes {A'B}, projecti P

The occupation probablity can be expressed by expectation value
of P; aspi(t) = Tr{ p(t)P;}, wherep(t) is the density operator.

are results of molecular motions governed by the Sdimger IP)(P|
equation. To discuss the connection between the Satger _ Ry E|P»)(P-| 4)
equation and the master equation is a fundamental issue in - ~ (P.IP) Jznj A

i

statistical physics as well as physical chemigfry.

The study on the microscopic foundation of master equations Here, ¢| and|-) represent bra and ket in the Liouville space,

has a long history. Van Kampen derived the master equation gnd we used the propert@,(P) = Tr{P} = n. The time-
under the assumption of cancellation of phase factors causedjependent ket is defined as

by “molecular chaos?’ The validity of this assumption,

however, was left to be an open question. Van Hove presented IP(t) = €-""p) = Hthp g R (5)

a different derivation without assuming the phase cancell&ion. ! ! !

He assumed, however, that the system has a continuous energyherel X = [H, X]. The starting point of our formalism is the
spectrum. Zwanzig discussed a generalized master equatiorbperator identity

satisfied by density operatét. In his theory the memory kernel

of the generalized master equation is assumed to decline with (ALBIUR _ AR | 1 [ty | i(A+B) ()i JA /R
time. There are several variations of master equafi®ré For € =+ ﬁf(‘)dt € Be
example, Robertson presented a generalized version of Zwan-

zig's equatior>3 All of these master equations are not The proof is given in Appendix A. By choosing the operators
Markovian as far as they are equivalent to the Sdhmger asA=(1— P)LandB = P L, eq 6 is written as

equation. Pursuits have been continued in order to derive

dissipative dynamics from quantum and classical mech&hics. LUk _ JA-P)Lvk | | Pt o L (t—tyh i(1-P )Lt/

The most fundamental study concerning the origin of irrevers- € =€ + hﬁ de PLe (7)

ibility has continuously been pursued by Prigogine and co-
workers3® which immediately leads to

In the present paper, we derive the Markovian master equation :

) i R A X iL t/h _ A@-P)LtA
without postulating a quasicontinuum nor a decline of memory € |P,') =€ |P,-) +
kernel, and we define a measure of IVR that monotonically i S 1 o
increases with time. In section 2, a generalized master equation —Zfot dt €-p)—(R L € p) (8)
for p;(t) is derived from the Sclidinger equation. In section h n
3, we analyze long-time behavior qfi(t) by use of the
renormalization-group methdd. When the recurrences of the
memory kernel are suppressed by the damping factéy the i 1
secular motion ofy(t) appears, and it obeys a Markovian master (PIP (D) = _Z ftds P ot s/h|PI)_(Pl|Lei(lfP)L(tfs)/h|P_)
equation. The relative entropy of the secular motion is a h 0 n, :
monotonically increasing function of time and is a desirable )
measure of IVR. In section 4, we examine the transition matrix ] )
of the master equation, and particularly analyze its dependenceere, we usedR|(1 — P) = 0 and changed the integration
on the damping parameter The finitee is shown to give rise variable tos = t — t'. Differentiating both sides with respect
to a nonzero transiton matrix. This implies that quasi- © L We obtain
irreversibility arises in a generic situation. Numerical ex-
amples are shown in section 5. Thkedependence of the  Z/p p (1)) =

" . o : . . —(PyPy(D)

transition matrix clarifies the mechanism causing the quasi- dt
irreversibility. The numerical results illustrate that the pre- 1 ; 1 {1=P L =
sent formalism successfully describes the secular dynamics of — };Zﬁ)ds (Pl P|(5));(P|||- € 1-P)LIP)
IVR. I

(6)

Multiplying (Py from the left, we obtain

(10)

2. Generalized Master Equation Derived from the Here, we used the property
Schradinger Equation
(PILIP) =Tr{R[HP]} = T{PHP, —PPH} =0 (11)
The goal of this section is to derive the equation of motion
for occupation probabilityp;(t), from the Schidinger equation. By using the notationPy(t) = (P«/Pj(t)) and changing the
In order to handlgy(t) in quantum mechanical formalism, itis  integration variable back tt =t — s, eq 10 can be written in
useful to define the projection operator: the matrix notation as
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the limit, known as the van Hove limi, A — 0 andt — o,
retainingA? to be finite. In other words, we consider the limit
of weak perturbation, but we examine the long-time limit, in
where the element of the memory-kernel matiixt), is defined which even very weak perturbation gives rise to a nontrivial
as effect. We assume f)(to be stationary if the perturbation is
_ turned off, i.e., Ho, P;] = 0. The memory kerné{ (t) is shown
K (® = (PILePMA—pP)L|P) (13)  to be on the order of magnitude df (see Appendix C).
Hereafter, we writeK (t) asA2K () so as to indicate explicitly
and n= diag(ny,n,,...N). Equation 12 is the basic equation of  thatK(t) ~ o(49). Thus, we can write as
the present formalism. It is derived from the Sdfirger

g = _i t ! U -1 T
GO = /ot KON P —1) (12)

equation without any approximation. In the following sections, d . ,1_2 L
we analyze the behavior of the memory kerkél) on the basis dtp(t) - hzj;)dt K(®)n "p(t - t) (19)
of eq 12.

We proceed to the next step to obtain equations of motion The naive perturbation expansion leads to
for p(t). By use of the inner product in Liouville spaqgg(t)
can be expressed agt) = (o(0)|p;(t)). If we assume that the 212 1 4
initial density operatop(0) is in P space, i.e.P|p(0)) = |p(0)), p® =[1- ;?](t)” p(0) + o(4") (20)
thenp(t) can be written as

where

1
p(t) = Z—(p(O)IPk)(Pkl P;(1) (14) Co
Ny Ity = [idt, [dt, K(ty) (21)

An elementary manipulation on eq 10 leads to the equations of

S The derivation is given in Appendix D. In the limit &f— oo,
motion:

J(t) may diverge or oscillate. The perturbation expansion is
d 1 opto o 1 , valid only when the term(h)2J(t)n~1 is much smaller than
&p(t) =- 2 odt K(t)n “p(t — t) (15) unity. In order to examine the behavior in long time wi)

may diverge, we need a singular perturbation treatment.
This is a generalized master equation with memory. The non- 3:B. Renormalization-Group Method. In this section, we
Markovness originates from the coherency of quantum dynam- @nalyze long-time behavior gb(t) on the basis of the re-
ics. The memory retains the information carried in the phase Normalization-group method, a powerful tool of singular
of quantum probability amplitudes. There is a parallelism perturbatior®® In order to carry out the renormalization, we
between eq 15 and Zwanzig's equatinThey differ, however, ~ N€ed to know the asymptotic behavior Xf) in the limit of t
in that eq 15 is a set of finite number of equations for scalar — ®- We begin with an intuitive argument. The memory
functions in contrast to Zwanzig’s equation for the operator. KernelK(t) is presumably an oscillatory function of time. The

Itis useful to carry out the Fourier transform when we handle ndefinite integral ofK (t) has, as — o, a constant baseline,
egs 12 and 15. We define the Fourier transform®@y and around which certain oscillation is added. The second indefinite

K(t) as integral, i.e.,J(t), should exhibit divergence proportional to
In other words, the limit
I (0) = [ dte “e"'P() (16) _ 1
K= !im?](t) (22)
and
. , exists. The existence of the limit is further discussed in section
X () = L dt e 'K (1) 17) 4. We can write)(t) = Kt + K (t), whereK (t) is an oscillatory
function. Substitution of this into eq 20 leads to
respectively. The factore is the convergence factor. In the ) )
usual situation, the limi¢ — O is taken. In the present paper, g A 1 AT 1 4
however, we retaire to be finite in order to suppress the PO =1 hthn hZK(t)n Po+0()  (23)
recurrences. The physical meaning and role of the damping

factor e is discussed in section 4. It follows from eq 12 that where p, = p(0). We follow the renormalization-group
I (w) and X (w) satisfy (see Appendix B) prescriptior®® By inserting the counter termiA2)rKn=1, we
obtain

X (w) = h7i(w + ie)n + nIl(w)'n] (18)

_ _ N TR i SRR
3. Long-Time Behavior p(t) =[1— f?(t —7Kn " — fTZTKn - fTZK(t)n Pot

3.A. Van Hove Limit. Zwanzig discussed the Markovian ) 0(14)

limit of his generalized master equati&h He considered long-
time behavior of a weakly perturbed system assuming that his [ 2 N ) 4
memory kernel declines as— . We follow Zwanzig in that =11- ﬁ(t —7Kn " - h_zK (On "[ge(z) + o(1%)

we also discuss long-time behavior of a system with weak
perturbation, but we do not assume that our memory kernel,
K(t), decays a$ — oo. wherer is an arbitrary and artificial parameter. In the second
We consider the Hamiltonian that consists of the unperturbed equality, we introduced the renormalized initial conditipr)
partHp and the perturbatioAV asH = Hp + AV. We examine to which the counter term is absorbed. According to the

(24)
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renormalization-group theory, we determipgr) so as to satisfy
the renormalization-group equation

().

P (25)

i.e., the condition that the artificial parametedoes not affect
p(t). From eq 24 the renormalization-group equation can be
written as

12

2 dgy(7 .
[1 - /I—ZK (t)n‘ll( Al )) +ZRn gyt + oA =0
h dr [ #?
(26)
which immediately leads to
dayo(t) Moo | A -
Oft = —[1 - ﬁK(t)n ! FTZKn 1g0(t) + (4%
= - izK n~Yq,(t) + o(1% (27)
= R Ao
Sinceqo(t) coincides withpg att = 0, we obtain
Mo 4
o) = exp — h—an Yt + o(A*)|p, (28)
Returning to eq 24, we obtain (notice that we put t)
— /IZN -1 12— — 4, 4
p(t)=|1- %K(t)n ex —FTZKn 't + o(A*)|py + o(1%)
(29)

We retain the term on the order of magnitutfé The above
equation, therefore, holds good for the time satisfying 1~
A72< 274 Timet should be sufficiently large so as to satisfy
K = J(t)/t. In short, eq 29 represents the long-time behavior
of p(t).

3.C. Secular Part. Equation 29 indicates tha(t) contains

the part whose time dependence is represented by a matrix
exponential. We call it the secular part; i.e., the secular part is

defined as

_ Ao
p(t) = ex;{— h_an 1’[] Po (30)
We dividep(t) into the secular pafi(t) and the resp(t) asp(t)
=p(t) + p(t). The termp(t) represents oscillatory behavior of
p(Y). It is noteworthy thaf(t) is “proportional” top(t), i.e.,
p) O K@®p(t). If K(t) is diagonal, eq 29 is parallel to the
Hilbert and ChapmanEnskog expansion of the solution to the
Boltzmann equatiof®
As can easily be seen, the secular ppft) obeys the
Markovian master equation
d_,\ e
4P =Wp() (31)
whereW = —(12h?)Kn~L. It can be shown that the transition

matrixW, satisfies the detailed balance relatgng = Wign;
(see Appendix E). As eq 30 indicates, the time evolution of
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On the basis of the secular p@tt), we define the secular
entropy as

SH=-Sp®! PO 32
o) = lZIO,—()n o (32)

1

It can be shown tha%(t) increases monotonically withwhen

pi(t) obeys a Markovian master equation satisfying the detailed
balance conditioR* Therefore, eq 31 guarantees tHa(t)
increases monotonically.

4. Analysis of K

4.A. Basic Equation for Estimating K In this section we
derive a relation betweeK and X.(w), which is useful in
estimatingK. By the use of the Fourier representatidit)
can be written as

() = fodt, [dt, e K (t) =
1 o t t —iw
> S~ do fdt, [dt, 67X (o)

2—:; f_ wmdw

1—i(w —ie)t—e

1—iwt—e
)

i(wy—iet

Xy (33)

(0 — i€)2

wherewy — i€ is the pole ofX.(w) andx is its residue. From

eg 18 we can see that the pole satisfies the equation
defll.(wx) = 0. In eq 33, the damping factor & is multiplied

to K(tp) in order to suppress the recurrences of the memory.
To analyze the effect of this artificial damping factor is the main
subject of the present section. From eq 33, we obtain

X

; (34)
w, — i€

If all the poles ofX.(w) are of the first order, i.e., if all the
roots of defll.(wy) = O are nondegenerate . (w) can be

expressed, according to the Mittageffler theorent}? by the

partial fraction expansion

Xy
Xf(w) N Z
o — o tie

which contains only the principal part due to the property (see
Appendix F)

(39)

Ii_rp X (w)=0 (36)
From egs 34 and 35, we obtain the relation
K. =X/0) (37)

On the basis of this relation, we estimate the magnitudé of
in the next subsection. Although the derivatiorkafin section
3 is based on the perturbation, eq 37 does not explicitly contain

p(t) is irreversible. It represents irreversible character embeddedthe unperturbed Hamiltoniado. By virtue of it, we can apply

in the reversible quantum dynamics. The secular péjtis
meaningful only ifK = 0. This condition is discussed in
section 4.

the present formalism without specifyiridy explicitly.
4.B. Estimation of K. from Spectroscopic Data. There
have been reported several attempts to obtain the dynamical
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information from spectra experimentally observed. We can In the second equality we used the propery, =

Someda and Fuchigami

—wmn Since

obtain autocorrelation functions from optical absorption 3, a, = 1 holds, the spectral intensitg, can be written as

spectr&®4> and mutual-correlation functions from Raman
excitation profiles'é4” The attempts to define the measure of
IVR by several authofs! are also along this direction. In

a,=N"+9, (47)

this section we show that information contained in absorption whered, represents fluctuation @, satisfyingy , 5, = 0. This

spectra enables us to estiméte under a particular choice of
the projection operators.
An absorption spectrum with infinitely fine resolution is given

by

I(E) = (38)

Sa0E-E)

whereE, represents the energy eigenvalue api the intensity
of the spectral line. Under the Condon approximatianjs
given by the FranckCondon factorl, = |[dn|yol?, wheregn
represents the eigenstate agg is the initial state of the
absorption transition. We choose the projection opera®ars
= |¢polllpo|, andP, = 1 — Py. In this casePaa(t) is written as

P.i(®) = [Gle gl =1y ae =" (39)
n
By the Fourier transform, we obtain
ia,” ia,a,
I, (w) = + (40)
. Zw—i—ie anw—wnm-l-ie

wherewnm= (En — Em)/h. In the limit ofe — 0, the imaginary
part of Il.11(w) is known to result in the spectral correlation
function® In the present paper, howeverjs retained to be
finite. It is useful to notice that sum rules

ijk(t) = ZTr{ PPiO} = Tr{(Z PIORO} =n  (41)

and

ijk(t) =TH Pk(z Pi()} = ny (42)
] 1

hold. These sum rules and the present choice of the projection

operators lead to

Pll(t) 1- Pll(t)

PO=11"P. 1) Py +N-2

(43)

whereN is the total number of quantum states.
II(w) is written as

i
I 44(w) w+ic IT,4(w)
H(w) = i i(N—2) (44)
o +ie __Hell(w) o Fic I1,4,(w)
From eqs 37 and 44, is given by
%% 2 2 -1 2 1 -1
K.,=X.(0)=—hA%n+ ANl (0) n=~h ke(_1 1) (45)
wherek, = (N — 1)(1 — eIlg)/(Nellp — 1) andITp = I1.11(0).
It follows from eq 40 that
L e LA [

mle — @ i=me? + w2

It follows that

leads to

Zanz =N'+N'o? (48)

n
whereo’ represents the standard deviation divided by the mean
value:

1 21/2 .
E(NZcSn) /N (49)
In consequence, we obtain
N—1{1-N"'1+0?
K= ( X 2 X ) —Z} (50)
o' “+ NZ,
where
’ag,
2=y ——r (51)
n=m52+wﬁm

By use of eq 50, we can estimate the valuekoffrom the
spectroscopic data, i.e., the spectral intensityand the energy
position, Ep.

We examine the behavior &f in the limits ofe — 0 ande
— o, The Taylor expansion df. in eq 50 with respect te
leads to the expression &f for smalle:

1+0'?
N

k.= e%(N - 1)(1 - ) + o(€) (52)
g

In order to examine the limit of — oo, €1 is expanded in ¥
as

A,
,=Ya’+yY——=
T s (o
wnm
1- Zanam(— (53)
n=m €

where we used the normalization of the spectral intensifigs,
a, = 1. It follows that

1
2 8@ T 0| (54)

€n=zm

Equations 52 and 54 indicate thatakes a nonzero value when

e is finite. In short, the secular part is shown to exist when the
convergence parameteris retained to be finite. In the next
section, thee dependence oK. is discussed on the basis of
model systems.

5. Examples

5.A. Hierarchical Picket Fence Model.
subsection, we consider the level structure

In the present
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Enn, = iDiny + AD,N, (55)

wheren; = 1, 2,...,N;andn, = 1, 2, ...,Np, and we assume
that N;D; < D,. This level structure involves two different
level spacingsD; andD,. Such structure is called hierarchical
structure and is known to give rise to dynamics involving
motions of two different time scalés.

In order to obtaink. (eq 50), it suffices to estimatE. (eq
51). We assume that the contributions frdmterms (see eq
47) approximately cancel with each other. Under this ap-
proximation we obtain

5P 1 é
(N1N2)2(n1mlg(n2mz)62 +{D,(n; — m) + D,(n, —my)}*
NZ 62
= +
(N;Np)Zne® + D,%(n, — my)?
le 62

(N;N,)*niTiee” + D,(n, — ”12)2(56)

Here, we usedN;D; << Dy, Ny > 1, andN, > 1. It is useful to
define a function

N n-1 1
=—) ) —— 67
™ NZnZ\rrz\l + (n— m?¢

Approximating the sum by integration (see Appendix G), we
obtain

o, o N=1) [ x2+N2)
sN(x)—Ntan (Xx2+N) (N) In(x2Jr1 (58)

The functionsy(x) can be approximated as

(2IN)? x<1
Sy(X¥) ={ (/N)x 1<x<N (59)
1— (N/6x®) N<x
By substituting egs 56 and 58 into eq 50, we obtain

_ -1 2y ] 1o (e €
B 1 (NlNZ) (1 + o ) { NZSNl(Dl) + S\IZ(DZ)}
k=e o? 1 € €
N;N, " N_zsq\ll(D_l) " SNZ(EZ)

By the use of eq 59, thedependence &, can be summarized
as

(60)

(N;N,Jo' D¢ e < (1Im)D,0’ 2 < D,

(N;N/7m)D; D; <e<N;D;

ke ={ Nye N,D; <e <D, (61)
N,D, D, <e <N,D,

(N1D1)2/6€ N2D2 <e

A significant point is thak. can be regarded as constant in the

regions 0fD; < € < N;D; andD, << e < N,D». In other words,
ke is insensitive to the artificial parameter This indicates that
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Figure 1. (a) k. given in_eq 60. The graph exhibits a plateau in the
region of 1< ¢ < 50. (b)Kai1<equation:some202> of the model in
section 5B. The graph exhibits a plateau in the region of 0-0@1<
0.005.

The graph exhibits a plateau in the regioneof 1.0~10.0.

This agrees with the prediction of eq 61 thatis constant in

the region ofD; < € < NiDy. In the region ofD; < € <

N2D», however k. does not completely become constant. This
is because the approximations used in eqs 59 and 61 are not
sufficiently good for the present choice of the parameters.

The ¢ dependence ok. and its physical contents can be
summarized as follows: In the limit of — 0, the dynamics
strictly follows the reversible quantum mechanics, and therefore,
ke vanishes. In short, no secular part exists in the limi¢ e
0. Whene is as large as the smallest energy-level spaBing
the bunches of quantum states work as quasicontinua, and the
recurrences of the longest time scale are suppressed. In
consequenceqy(t) comes to have the secular pp(t). Particu-
larly when the energy level has a hierarchical structure, there
exists the regime where the magnitudekofs insensitive ta.

In this regime,p(t) and the master equation have a robust
physical meaning, and we can define the entr&iy (eq 32)

as a measure of IVR. Whenis so large that the damping
factor e<t affects the dynamics of short time scales, the
information carried in the memory kernel is lost, dndooses

its physical meaning as is implied by vanishikgn the limit

of € — oo,

5.B. Coupled Harmonic Oscillator Model. In this subsec-
tion, we examingp(t) and S(t) as well as the: dependence of
K. on the basis of a coupled harmonic oscillator model. The

the master equation has a robust physical meaning. In FigureHamiltonian is given by

1a,k. (eq 60) is plotted, in which the parametéis = 50, N,
= 500,D; = 1.0,D, = 5.0 x 1% and¢’ = 1.0 are adopted.

H=2a'a+ b'b + &@" + a)(b" + b)? (62)
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Figure 2. (a) Occupation probabilitp,(t) (thin line) and secular part
pu(t) (broken line) of the model in section 5B. (b) Relative entropy
S(t) (solid line) and secular entrogt) (broken line) of the model in
section 5.B.

wherea andb are boson annihilation operators. The parameter
¢ = 0.0002 is adopted. The energy level of the present
Hamiltonian has a hierarchical structdfe The initial state is
chosen agpoll= 2-24(]0, 18H |0, 19), where|v,, vp[denotes
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Figure 3. (a) Occupation probabilitpi(t) (thin line) and secular part,

the eigenstate of the uncoupled two-dimensional harmonic Pi() (thick line) of the model in section 5C. (m(1), Px(t), ps(t), and

oscillator, Hy = 2a’a + b'h. The projection operators are
chosen asP; = |¢ollpo| and P, = 1 — P;. By numerical
calculation using 156 basis stat&t), I1.(w), X(w), K¢, p(t),
and () are obtained.

Figure 1b show.;; as a function ok. A plateau is seen
in the region ofe = 0.001~0.01. By settinge = 0.002 (at the
middle of the plateau(t) is calculated. Figure 2a shog(t)
as a function oft together withpy(t). It can be seen that the
secular decrease pi(t) is nicely represented bg(t). Figure
2b shows the relative entroj$t) (eq 1) and the secular entropy
() (eq 32). Althougl(t) exhibits oscillation originating from
quantum dephasingS(t) increases monotonically so as to
represent the secular increaseSf.

Figure 1b shows that.;; reaches a maximum at= 0.9.
The maximum value oK_.q; also has a physical meaning. Itis
the maximum possible decay rate@ft). If we choosec =
0.9 (at the maximum oK.11), Pa(t) decays quickly, mimicking
the fast fall-down ofps(t) in the shortest time scale. In this

ps(t) of the model in section 5C. (c) Relative entro§ff) (thin line)
and secular entrop§(t) (thick line) of the model in section 5C.

initial bright state |¢p[is coupled to a doorway stategl] with

a coupling matrix elementgpy|H|p4C0= 2.0. The zeroth-order
energies ofgp,Cand|¢qCare set equal to zero; i.édp|H|pp =
[p4q|H|pg0= 0. The doorway state is coupled with 250 dark
states|p,dn =1, 2, ..., 250), which are distributed with equal
spacing, i.e.,[¢n|H|pn0= 0.040r — 124.5). We adopt the
coupling matrix elementgpq/H|¢n= 0.05, which is independent
of n. The interaction betweej@y,Cand [¢p,00(n = 1, 2, ..., 250)

is set equal to zero. We adopt the projection operatrss
|ppllipp|, P2 = |¢alllpal, andPs = 3 nlpnllpn|.

By numerical calculationK. 1 is found to have a maximum
ate = 0.025, to which the value af is fixed in the following
calculation. In the present modé, is a 3 x 3 matrix and is
capable of describing the decay containing two different
components, i.e., fronyyldg| and from|¢pglto the dark states.

choice ofe, even the fastest dephasing is treated as a recurrencel his is a reason whit.q; does not have any plateau in contrast

to be disregarded. In short, the maximum Kfi; is also
physically meaningful, although it is practically useless in this
particular example from the chemical point of view. The

to the example in the preceding subsection. The secular part
p(t) is plotted in Figures 3a,b and 4a together wiilt). The
former successfully extracts the long time behavior of the latter.

existence of the plateau indicates the existence of dynamics ofThe secular partg(t), p2(t), andps(t), exhibit typical time

long time scale other than the fastest dephasing.
5.C. Model of Sequential IVR. In this subsection, a

dependence of “successive reaction”. The population of the
initial state (¢p0) is transmitted to the “reaction intermediate”

prototypical model of sequential dynamics is discussed. The (|¢40) and then the “final product” (the dark states) gradually
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Figure 4. (a) p«(t) andpa(t) of the model in section 5C. in the short
time scale. (b5(t) of the model in section 5C. in the short time scale.
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grows. The secular motion of quantum dynamics is shown to
result in the behavior well-known in the macroscopic chemical
kinetics.

The relative entropy§(t), and the secular pa&t), are shown
in Figures 3c and 4b. The latter nicely describes the secular
increase of the former. In the short time scales 0~0.003,
§(t) increases quickly. It represents the fast transition ffosnl
to |p4l] The gradual increase &(t) in the long time scale

corresponds to the slow dissipation into the dark states. In short,

the secular entropy increases by two different production rates,
each of which corresponds to each step of the sequential
dynamics of the present model, i.e., frggto |p4sCand from
|pgCIto the dark states.

6. Discussion

In sections 4 and %. is estimated on the basis of the spectral
positions and intensities, both of which can be obtained
experimentally. It should be noted thit is obtained from
the zero-frequency part d1(w). As can be seenin eq 46, smalll
spacingwnm has a larger contribution tdlp, and thus toK..

The data based on the spectrum of less than perfect resolutio

are, therefore, liable to cause error. The circumstance is parallel

to the case of radiationless transition, where the rate is
determined by the density of states. In short, missing peaks
may harm the accuracy of the estimation even if their intensities
are weak.

choice of the damping parameter The criterion should be
derived on the basis of physical insight. An important point is
thatK, has a maximum as a function ef(see Figure 1) in all
the cases discussed in section 5. The maximum valué.of

n
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dephasing. Inthese cases, the time scale of interest concerning
IVR can be obtained at the plateaukof. The behavior oK.
depends on both the dynamics of the system and the choice of
projection. The appropriate value ©tan be obtained at either
maximum point or plateau part, i.e., at nearly stationary point,
depending on the cases.

Such stationary points arise from the hierarchical structure
of molecular spectra as demonstrated in section 5A. The
hierarchical structure gives rise to the separation of time scales
of different dynamics, and the latter enables us to neglect the
recurrence, i.e., the dynamics of the longest time scale, without
affecting the IVR dynamics of interest. If there is no hierarchi-
cal structureK . indicates merely the time scale of the shortest
dephasing. In short, the neglect of recurrence is justifiable when
the IVR is stepwise and the molecular spectrum possesses a
hierarchical structure.

7. Summary

For the purpose of acquiring a measure of IVR, the quasi-
irreversibility in the quantum dynamics is discussed. It is shown
in the present paper that the quantum-mechanical time evolution
of the occupation probabilityp(t), obeys a generalized master
equation (eq 15) having a non-Markovian memory kernel.

A Markovian limit of the generalized master equation is
discussed by analyzing the long-time behaviomp¢) on the
basis of the renormalization-group method. We define the
secular parp(t), which obeys a Markovian master equation (eq
31). The secular entrop(t) (eq 32) is defined by use @i(t).

It follows that S(t) is a monotonically increasing function of
time. It is a property desirable for a measure of IVR.

The Markovian master equation fg(t) has a physical
meaning when the quantum recurrences in the memory kernel
are suppressed by the damping factot.eln the limit of e —

0, in which the strictly reversible quantum mechanics governs,
the transition matrix of the master equation is shown to vanish.
Also in the limit of ¢ — o, the master equation looses its
meaning simply because the dynamical information carried in
the memory kernel is lost in this limit.

The ¢ dependence is analyzed on the basis of model
calculations. Itis found that the system exhibiting a hierarchical
level structure gives rise to a master equation insensitive to the
value ofe. Thee dependence clarifies the mechanism giving
rise to the quasi-irreversibility. Numerical calculation based
on model Hamiltonians is carried out, ap() andS(t) are found
to represent successfully the secular bahavigo(9fand t),
respectively, when the damping parametes kept finite. The
retention of the damping parameter is best justified in the case
of sequential IVR. A model of sequential IVR (section 5C)
shows that the secular motion of quantum dynamics follows

the macroscopic chemical kinetics. The secular entropy mono-

. . L tonically increases by different production rates, indicating two
No mathematical reasoning can lead to a criterion for theé yigtarant time scales of IVR.

In conclusion, the secular
dynamics derived on the basis of the renormalization-group
method well describes quasi-irreversible dynamics embedded
in IVR, and thereby, the measure of IVR is obtained.

corresponds to the maximum possible decay rate and has a
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. . Ky () = (P/Le PP — p)L|P)
Appendix A: Proof of Equation 6

The left-hand side of eq 6 satisfies the differential equation =2’(P|L,e TP —p )LyIP) (69)
%ei(A+B)t/h _ %(A—k B)el(ABh (63) Thus, it is shown thaK (t) ~ o(4?).

and the boundary conditiorff&®|._o = 1. On the other hand, Appendix D: Derivation of Equation 20

the right-hand side of eq 6 is also shown to satisfy the same

i i 2 = p(0)
differential equation as We expando(t) in the power series of? asp(t) = pO(t) +

22p@)(t) + o(4%). Substituting this into eq 19, we obtain
d

dt

AR 1t (AB)(—t) g JAUR
S Jodt' € Be pO®) + 22p@) + 01 =

- iTz [idt, Kt pOt — t,) + o(2%) (70)

i A javh 1o jAvs
= Laghth 4 Lpghth 4
A
ot i )AL From the terms on the order #f, we obtainp©(t) = 0, which
= ["dt' (A + B)gABhpd ; . ' '
hL/; h( ) immediately leads tp©(t) = p©. From the term on the order

of A2, we obtain

_ }i71( A+ B)|A 4+ % jgdt' dAHB-ORgdATh] (g

1 —
() = — = [ty Kt *pt — t,)

At t = 0 the right-hand side of eq 64 results in 1. Accordingly,

the left- and right-hand sides of eq 6 both satisfy the same first- __ 1. ~1

order differential equation with the same boundary condition, hZ{J:) dt, K(t)}n "p(0) (71)
and hence, they are identical with each other.

. - i which leads to
Appendix B: Derivation of Equation 18

By use of the relation p?(t) = — hl_Z{fot dt; otl dt, K(t)}np(0)  (72)
d —et _ —et —et d
€ PO = o(P(0) — ee “O(P(H) + e e(t)apgga From this andp©(t) = p© obtained above, we obtain eq 20.
eq 12 multiplied with e<0(t) in both sides leads to Appendix E: Proof of the Detailed Balance Condition of
Equation 31
d . —¢
o 'O(t)P() = 6(t)P(0) — ee “O(L)P(t) — We begin with showing the symmetry of the matfif). By

» ) ) definition Py(t) is given by
# [ dt e oK (t)n e o — t)P(t — t) (66) J

Ne N

. . ij(t) = IEMIe*iH“f‘IJ'MDJZ =
By use of the inverse transformation of eqs 16 and 17, eq 66 o=
can be written as N

;;Qmmumbtmm“wf (73)

where |nOis the eigenstate dfl and E, is the corresponding
eigenvalue. Whehl is real symmetric, we can choose the basis
states so thalfju|nis real. It can easily be seen from eq 73
which leads to that Py(t) = Py(t) when[u|nLis real. Symmetry oP(t) leads
to symmetricll(w) (see eq 16), symmetri&(w) (see eq 18),
) 1 1 symmetricK(t) (see eq 17), symmetrid(t) (see eq 21), and
—ioll (w) = P(0) — eIl (w) — h_zxe(w)” I (w) (68) finally symmetricK (see eq 22). The symmetry & gives
rise to the detailed balance condition as

) o €N iw)T () =

7 do € P(0) — €T () - f%zxg(w)n_lﬂg(a)) (67)

From the definition, it follows that?(0) = n. Elementary 12 12
algebra leads to eq 18. Wyn, = — fTZKjk = _ h_szi =W,n, (74)
Appendix C: Derivation of Equation 19

The assumptionHo,P;] = 0 leads td_|P;) = [Ho + AV,P] = Appendix F: Proof of Equation 36
;L[V,Pj] = iL1|Pj) and that Pj|L|X) = Tr{P,-[Ho + ).V,X]} =
ATH{X[P;,V]} = A(Pj|L1/X), whereX is an arbitrary operator. By definition Iij(w) is expressed as
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I (w) = ﬂ) dte jtelwtpkj(t)
non Imlnmﬂuln@l
"ZZ[
w+ie
[RllnDleu|nB1[kﬂ.|m|3[ﬂu|m

75
nzm 0 — Oy, T i€ (79)
It follows that
N N
lim oIl () = iAZ[Z|ERl|nE[[ﬂu|nB|2
w0 == “h
szMnEL[jumE?DkaB[MmE]]
n=m
N N
=i (BA|N(je | N0 [BA M e |mO
2220

which leads to

(!)l_r‘[lo X (w) = (LILT(L A7i(w — ie)n + wn(wl'[e(a)))fln]

=h?iwn + wnin) n]=0 (77)

Appendix G: Derivation of Equation 58

After rearrangement of the running suffixestp=n + m
andn- = n — m, the summation is approximated by an integral
as

N n-1
(x) =
R Zzu + (n— m)2/x2
2N —2n_

2 N1 1

Nn=11+ (n o) 2

N-1q1  1—(n/N)

n=1 N1+ (N/x)2 (n_/N)?

fl’” 1+ (N/x) 22

11 X

X2+ N?
— tan > n——
2N

=2 x2+l] (78)

X[iyq1
N(tan

Further reduction by elementary algebra leads to eq 58.
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