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An irreversible character of the intramolecular vibrational energy redistribution (IVR) is discussed, and a
novel definition of entropy of molecular vibration is proposed. A generalized master equation having a non-
Markovian memory kernel for the occupation probability (squared modulus of the probablity amplitude) is
derived from the Schro¨dinger equation. Long-time behavior of the occupation probability is analyzed by the
renormalization-group method. The occupation probability exhibits secular motion when recurrences of the
memory kernel are suppressed by an exponential-damping factor e-εt. The secular motion obeys a Markovian
master equation and represents quasi-irreversible dynamics, which is embedded in the reversible quantum
dynamics and caused by the suppression of the recurrences. Transition rates of the quasi-irreversible dynamics
are discussed in connection with molecular absorption spectra. Theε-dependence of the transition matrix
clarifies the mechanism giving rise to the quasi-irreversibility. The irreversible character of the secular dynamics
can be utilized to estimate the entropy, which indicates the extent of the IVR proceeded up to a given time.

1. Introduction

The study of molecular reaction dynamics has shown that
the energy transfer among vibrational degrees of freedom takes
a crucial role in dynamical processes, such as chemical reaction
and molecular dissociation, particularly when polyatomic mol-
ecules are involved.1,2 This energy transfer is called intramo-
lecular vibrational energy redistribution (IVR) and has long been
a target of many experimental and theoretical studies.2-4

The simplest classical picture of IVR is uniform distribution
of the energy among the vibrational degrees of freedom. In
this sense, IVR can be interpreted as randomization caused in
the approach to the microcanonical equilibrium. From the
quantum mechanical point of view, IVR is a diffusion of
probablity amplitudes over the quantum states under conserva-
tion of the total energy. The wave function is continuously
deformed in the course of IVR and finally acquires a very
complicated shape. In this context, IVR has often been
discussed in connection with quantum chaos.5-8 Several
attempts to define a measure that indicates the complexity of
wave function have been reported.9-11 The main problem in
these studies originates from the fact that IVR is strictly
reversible pure-state dynamics. In consequence, the von Neu-
mann entropy of the pure-state densty operator is always zero
and not very useful as a measure of IVR. Heller proposed a
measure on the basis of a volume of the classical phase space
swept by the distribution function up to a given time.9 Although
the measure of Heller is a good measure for ergodicity, it does
not represent the complexity of wave function. On the other
hand, Remacle and Levine proposed a kind of relative entropy
on the basis of the maximum entropy formalism.11 The relative
entropy (or conditional entropy) is defined as

wherepj(t) is the occupation probablity of a quantum state or
of a group of quantum states:

Here, |Ψ(t)〉 is the wave function of the system and|jµ〉 is a
basis state, wherej is the index of group andµ specifies the
member of group. Remacle and Levine discussed the case in
whichp1 ) |〈Ψ(0)|Ψ(t)〉|2. The entropy of Remacle and Levine
oscillates in accordance with the oscillation of|〈Ψ(0)|Ψ(t)〉|2
as shown in section 5 of the present paper. This oscillation is
quantum dephasing caused by motion of a wave packet traveling
to and fro in the configuration space.

The purpose of the present study is to define a measure of
IVR that does not increase with the reversible dephasing but
does increase monotonically with the irreversible approach to
the equilibrium. For this purpose we need to extract irrevers-
ibility from the dynamics ofpj(t) and to clarify the condition to
encounter the irreversibility.

Irreversible dynamics in molecular processes, such as internal
conversion and intersystem crossing, has successfully been
described by the theory of radiationless transition.12,13 The basic
assumption of the latter theory is the existence of densely located
energy levels giving rise to a quasicontinuum. This assumption
is equivalent to disregard of recurrences. It is valid when the
recurrence time is much longer than the time scale of chemical
interest. A nonstationary state prepared, for example, by a
pulsed-laser excitation undergoes exponential decay when it is
coupled with a quasicontinuum. In the present paper we name
such decay “quasi-irreversibility” because it is the irreversibility
caused by the disregard of recurrences. Recent studies have
shown that IVR sometimes consists of several different molec-
ular motions, each having a different time scale.3,14-23 The
dynamics of the longest time scale can be regarded as irrevers-

pj(t) ≡ ∑
µ)1

nj

|〈jµ|Ψ(t)〉|2 (2)

S(t) ) -∑
j

pj(t) ln
pj(t)

nj

(1)
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ible decay like radiationless transition upon disregard of the
reccurences. In this case, extraction of quasi-irreversible
dynamics can be achieved by disregarding the recurrences of
the longest time scale.

Irreversible time evolution can be described by master
equations. It is known that the relative entropy increases
monotonically when the time evolution ofpj(t) obeys a
Markovian master equation satisfying the detailed balance
condition.24 The Markovian master equation is a fundamental
tool for describing rate processes in macroscopic chemical
kinetics2 and photochemistry.25 All these chemical processes
are results of molecular motions governed by the Schro¨dinger
equation. To discuss the connection between the Schro¨dinger
equation and the master equation is a fundamental issue in
statistical physics as well as physical chemistry.26

The study on the microscopic foundation of master equations
has a long history. Van Kampen derived the master equation
under the assumption of cancellation of phase factors caused
by “molecular chaos”.27 The validity of this assumption,
however, was left to be an open question. Van Hove presented
a different derivation without assuming the phase cancellation.28

He assumed, however, that the system has a continuous energy
spectrum. Zwanzig discussed a generalized master equation
satisfied by density operator.29 In his theory the memory kernel
of the generalized master equation is assumed to decline with
time. There are several variations of master equations.30-34 For
example, Robertson presented a generalized version of Zwan-
zig’s equation.35,36 All of these master equations are not
Markovian as far as they are equivalent to the Schro¨dinger
equation. Pursuits have been continued in order to derive
dissipative dynamics from quantum and classical mechanics.37

The most fundamental study concerning the origin of irrevers-
ibility has continuously been pursued by Prigogine and co-
workers.38

In the present paper, we derive the Markovian master equation
without postulating a quasicontinuum nor a decline of memory
kernel, and we define a measure of IVR that monotonically
increases with time. In section 2, a generalized master equation
for pj(t) is derived from the Schro¨dinger equation. In section
3, we analyze long-time behavior ofpj(t) by use of the
renormalization-group method.39 When the recurrences of the
memory kernel are suppressed by the damping factor e-εt, the
secular motion ofpj(t) appears, and it obeys a Markovian master
equation. The relative entropy of the secular motion is a
monotonically increasing function of time and is a desirable
measure of IVR. In section 4, we examine the transition matrix
of the master equation, and particularly analyze its dependence
on the damping parameterε. The finiteε is shown to give rise
to a nonzero transition matrix. This implies that quasi-
irreversibility arises in a generic situation. Numerical ex-
amples are shown in section 5. Theε-dependence of the
transition matrix clarifies the mechanism causing the quasi-
irreversibility. The numerical results illustrate that the pre-
sent formalism successfully describes the secular dynamics of
IVR.

2. Generalized Master Equation Derived from the
Schro1dinger Equation

The goal of this section is to derive the equation of motion
for occupation probability,pj(t), from the Schro¨dinger equation.
In order to handlepj(t) in quantum mechanical formalism, it is
useful to define the projection operator:

The occupation probablity can be expressed by expectation value
of Pj aspj(t) ) Tr{F(t)Pj}, whereF(t) is the density operator.
Mori discussed equations of motion for expectation values in
his well-known formalism.40,41 Here, we obey his prescription,
in which we need an inner product and a projection operator in
the Liouville space. We define the inner product as (A|B) ≡
Tr{A†B}, and the projection operator as

Here, (‚| and |‚) represent bra and ket in the Liouville space,
and we used the property (Pj|Pj) ) Tr{Pj} ≡ nj. The time-
dependent ket is defined as

whereL X ≡ [H, X]. The starting point of our formalism is the
operator identity

The proof is given in Appendix A. By choosing the operators
asA ≡ (1 - P)L andB ≡ P L, eq 6 is written as

which immediately leads to

Multiplying (Pk| from the left, we obtain

Here, we used (Pk|(1 - P) ) 0 and changed the integration
variable tos ≡ t - t′. Differentiating both sides with respect
to t, we obtain

Here, we used the property

By using the notationPjk(t) ≡ (Pk|Pj(t)) and changing the
integration variable back tot′ ) t - s, eq 10 can be written in
the matrix notation as

Pj ≡ ∑
µ)1

nj

|jµ〉〈jµ| (3)

P ≡ ∑
j

|Pj)(Pj|
(Pj|Pj)

) ∑
j

1

nj

|Pj)(Pj| (4)

|Pj(t)) ≡ eiL t/p|Pj) ) eiHt/pPje
-iHt/p (5)

ei(A+B)t/p ) eiAt/p + i
p
∫0

t
dt′ ei(A+B)(t-t′)/pBeiAt′/p (6)

eiL t/p ) ei(1-P)L t/p + i
p
∫0

t
dt′ eiL (t-t′)/pPLei(1-P )L t′/p (7)

eiL t/p|Pj) ) ei(1-P)L t/p|Pj) +
i

p
∑

l
∫0

t
dt′ eiL (t-t′)/p|Pl)

1

nl

(Pl|L ei(1-P)L t′/p|Pj) (8)

(Pk|Pj(t)) )
i

p
∑

l
∫0

t
ds (Pk|eiL s/p|Pl)

1

nl

(Pl|Lei(1-P)L(t-s)/p|Pj)

(9)

d

dt
(Pk|Pj(t)) )

-
1

p2
∑

l
∫0

t
ds (Pk|Pl(s))

1

nl

(Pl|L ei(1-P )L (t-s)/p(1 - P )L |Pj)

(10)

(Pl|L|Pj) ) Tr{Pl[H,Pj]} ) Tr{PlHPj - PlPjH} ) 0 (11)
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where the element of the memory-kernel matrix,K (t), is defined
as

and n≡ diag(n1,n2,...,nN). Equation 12 is the basic equation of
the present formalism. It is derived from the Schro¨dinger
equation without any approximation. In the following sections,
we analyze the behavior of the memory kernelK (t) on the basis
of eq 12.

We proceed to the next step to obtain equations of motion
for pj(t). By use of the inner product in Liouville space,pj(t)
can be expressed aspj(t) ) (F(0)|pj(t)). If we assume that the
initial density operatorF(0) is inP space, i.e.,P|F(0)) ) |F(0)),
thenpj(t) can be written as

An elementary manipulation on eq 10 leads to the equations of
motion:

This is a generalized master equation with memory. The non-
Markovness originates from the coherency of quantum dynam-
ics. The memory retains the information carried in the phase
of quantum probability amplitudes. There is a parallelism
between eq 15 and Zwanzig’s equation.29 They differ, however,
in that eq 15 is a set of finite number of equations for scalar
functions in contrast to Zwanzig’s equation for the operator.

It is useful to carry out the Fourier transform when we handle
eqs 12 and 15. We define the Fourier transforms ofP(t) and
K (t) as

and

respectively. The factor e-εt is the convergence factor. In the
usual situation, the limitε f 0 is taken. In the present paper,
however, we retainε to be finite in order to suppress the
recurrences. The physical meaning and role of the damping
factor e-εt is discussed in section 4. It follows from eq 12 that
Πε(ω) andXε(ω) satisfy (see Appendix B)

3. Long-Time Behavior

3.A. Van Hove Limit. Zwanzig discussed the Markovian
limit of his generalized master equation.29 He considered long-
time behavior of a weakly perturbed system assuming that his
memory kernel declines ast f ∞. We follow Zwanzig in that
we also discuss long-time behavior of a system with weak
perturbation, but we do not assume that our memory kernel,
K (t), decays ast f ∞.

We consider the Hamiltonian that consists of the unperturbed
partH0 and the perturbationλV asH ) H0 + λV. We examine

the limit, known as the van Hove limit,29 λ f 0 and t f ∞,
retainingλ2t to be finite. In other words, we consider the limit
of weak perturbation, but we examine the long-time limit, in
which even very weak perturbation gives rise to a nontrivial
effect. We assume p(t) to be stationary if the perturbation is
turned off, i.e., [H0, Pj] ) 0. The memory kernelK (t) is shown
to be on the order of magnitude ofλ2 (see Appendix C).
Hereafter, we writeK (t) asλ2K (t) so as to indicate explicitly
that K (t) ∼ o(λ2). Thus, we can write as

The naive perturbation expansion leads to

where

The derivation is given in Appendix D. In the limit oft f ∞,
J(t) may diverge or oscillate. The perturbation expansion is
valid only when the term (λ/p)2J(t)n-1 is much smaller than
unity. In order to examine the behavior in long time whenJ(t)
may diverge, we need a singular perturbation treatment.

3.B. Renormalization-Group Method. In this section, we
analyze long-time behavior ofp(t) on the basis of the re-
normalization-group method, a powerful tool of singular
perturbation.39 In order to carry out the renormalization, we
need to know the asymptotic behavior ofJ(t) in the limit of t
f ∞. We begin with an intuitive argument. The memory
kernelK (t) is presumably an oscillatory function of time. The
indefinite integral ofK (t) has, ast f ∞, a constant baseline,
around which certain oscillation is added. The second indefinite
integral, i.e.,J(t), should exhibit divergence proportional tot.
In other words, the limit

exists. The existence of the limit is further discussed in section
4. We can writeJ(t) ) Kh t + K̃ (t), whereK̃ (t) is an oscillatory
function. Substitution of this into eq 20 leads to

where p0 ) p(0). We follow the renormalization-group
prescription.39 By inserting the counter term (λ2/p2)τKh n-1, we
obtain

whereτ is an arbitrary and artificial parameter. In the second
equality, we introduced the renormalized initial conditionq0(τ)
to which the counter term is absorbed. According to the

d
dt

P(t) ) - 1

p2∫0

t
dt′ K (t′)n-1P(t - t′) (12)

Kjl(t) ≡ (Pl|L ei(1-P )L t/p(1 - P )L |Pj) (13)

pj(t) ) ∑
k

1

nk

(F(0)|Pk)(Pk|Pj(t)) (14)

d
dt

p(t) ) - 1

p2∫0

t
dt′ K (t′)n-1p(t - t′) (15)

Πε(ω) ≡ ∫0

∞
dt e-εteiωtP(t) (16)

Xε(ω) ≡ ∫0

∞
dt e-εteiωtK (t) (17)

Xε(ω) ) p2[i(ω + iε)n + nΠε(ω)-1n] (18)

d
dt

p(t) ) - λ2

p2∫0

t
dt′ K (t′)n-1p(t - t′) (19)

p(t) ) [1 - λ2

p2
J(t)n-1]p(0) + o(λ4) (20)

J(t) ≡ ∫0

t
dt1∫0

t1dt2 K (t2) (21)

Kh ≡ lim
tf∞

1
t
J(t) (22)

p(t) ) [1 - λ2

p2
tKh n-1 - λ2

p2
K̃ (t)n-1]p0 + o(λ4) (23)

p(t) ) [1 - λ2

p2
(t - τ)Kh n-1 - λ2

p2
τKh n-1 - λ2

p2
K̃ (t)n-1]p0 +

o(λ4)

) [1 - λ2

p2
(t - τ)Kh n-1 - λ2

p2
K̃ (t)n-1]q0(τ) + o(λ4)

(24)
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renormalization-group theory, we determineq0(τ) so as to satisfy
the renormalization-group equation

i.e., the condition that the artificial parameterτ does not affect
p(t). From eq 24 the renormalization-group equation can be
written as

which immediately leads to

Sinceq0(t) coincides withp0 at t ) 0, we obtain

Returning to eq 24, we obtain (notice that we putτ ) t)

We retain the term on the order of magnitudeλ2t. The above
equation, therefore, holds good for the time satisfying 1, t ∼
λ-2 , λ-4. Time t should be sufficiently large so as to satisfy
Kh = J(t)/t. In short, eq 29 represents the long-time behavior
of p(t).

3.C. Secular Part. Equation 29 indicates thatp(t) contains
the part whose time dependence is represented by a matrix
exponential. We call it the secular part; i.e., the secular part is
defined as

We dividep(t) into the secular partpj(t) and the restp̃(t) asp(t)
) pj(t) + p̃(t). The termp̃(t) represents oscillatory behavior of
p(t). It is noteworthy thatp̃(t) is “proportional” to pj(t), i.e.,
p̃(t) ∝ K̃ (t)pj(t). If K̃ (t) is diagonal, eq 29 is parallel to the
Hilbert and Chapman-Enskog expansion of the solution to the
Boltzmann equation.26

As can easily be seen, the secular partpj(t) obeys the
Markovian master equation

whereW ≡ -(λ2/p2)Kh n-1. It can be shown that the transition
matrix,W, satisfies the detailed balance relationWjknk ) Wkjnj

(see Appendix E). As eq 30 indicates, the time evolution of
pj(t) is irreversible. It represents irreversible character embedded
in the reversible quantum dynamics. The secular partpj(t) is
meaningful only if Kh * 0. This condition is discussed in
section 4.

On the basis of the secular partpj(t), we define the secular
entropy as

It can be shown thatSh(t) increases monotonically witht when
pjj(t) obeys a Markovian master equation satisfying the detailed
balance condition.24 Therefore, eq 31 guarantees thatSh(t)
increases monotonically.

4. Analysis of Kh

4.A. Basic Equation for Estimating Kh In this section we
derive a relation betweenKh and Xε(ω), which is useful in
estimatingKh . By the use of the Fourier representation,J(t)
can be written as

whereωk - iε is the pole ofXε(ω) andxk is its residue. From
eq 18 we can see that the poleωk satisfies the equation
detΠε(ωk) ) 0. In eq 33, the damping factor e-εt2 is multiplied
to K (t2) in order to suppress the recurrences of the memory.
To analyze the effect of this artificial damping factor is the main
subject of the present section. From eq 33, we obtain

If all the poles ofXε(ω) are of the first order, i.e., if all the
roots of detΠε(ωk) ) 0 are nondegenerate,Xε(ω) can be
expressed, according to the Mittag-Leffler theorem,42 by the
partial fraction expansion

which contains only the principal part due to the property (see
Appendix F)

From eqs 34 and 35, we obtain the relation

On the basis of this relation, we estimate the magnitude ofKh ε

in the next subsection. Although the derivation ofKh ε in section
3 is based on the perturbation, eq 37 does not explicitly contain
the unperturbed HamiltonianH0. By virtue of it, we can apply
the present formalism without specifyingH0 explicitly.

4.B. Estimation of Kh E from Spectroscopic Data. There
have been reported several attempts to obtain the dynamical

(∂p(t)
∂τ )

τ)t
) 0 (25)

[1 - λ2

p2
K̃ (t)n-1](dq0(τ)

dτ )
τ)t

+ λ2

p2
K̃n-1q0(t) + o(λ4) ) 0

(26)

dq0(t)

dt
) -[1 - λ2

p2
K̃ (t)n-1]-1λ2

p2
Kh n-1q0(t) + o(λ4)

) - λ2

p2
Kh n-1q0(t) + o(λ4) (27)

q0(t) ) exp[- λ2

p2
Kh n-1t + o(λ4t)]p0 (28)

p(t) ) [1 - λ2

p2
K̃ (t)n-1] exp[-λ2

p2
Kh n-1t + o(λ4t)]p0 + o(λ4)

(29)

pj(t) ≡ exp[- λ2

p2
Kh n-1t]p0 (30)

d
dt

pj(t) ) Wpj(t) (31)

Sh(t) ≡ -∑
j

pjj(t) ln
pjj(t)

nj

(32)

Jε(t) ≡ ∫0

t
dt1∫0

t1dt2 e-εt2K (t2) )

1
2π∫-∞

∞
dω∫0

t
dt1∫0

t1dt2 e-iωt2Xε(ω)

) 1
2π∫-∞

∞
dω 1 - iωt - e-iωt

ω2
Xε(ω)

) -i∑
k

1 - i(ωk - iε)t - e-i(ωk-iε)t

(ωk - iε)2
xk (33)

Kh ε ≡ lim
tf∞

Jε(t)

t
) -∑

k

xk

ωk - iε
(34)

Xε(ω) ) ∑
k

xk

ω - ωk + iε
(35)

lim
ωf∞

Xε(ω) ) 0 (36)

Kh ε ) Xε(0) (37)
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information from spectra experimentally observed. We can
obtain autocorrelation functions from optical absorption
spectra43-45 and mutual-correlation functions from Raman
excitation profiles.46,47 The attempts to define the measure of
IVR by several authors9-11 are also along this direction. In
this section we show that information contained in absorption
spectra enables us to estimateKh ε under a particular choice of
the projection operators.

An absorption spectrum with infinitely fine resolution is given
by

whereEn represents the energy eigenvalue andan is the intensity
of the spectral line. Under the Condon approximation,an is
given by the Franck-Condon factoran ) |〈φn|ψ0〉|2, whereφn

represents the eigenstate andψ0 is the initial state of the
absorption transition. We choose the projection operatorsP1

≡ |φ0〉〈φ0|, andP2 ≡ 1 - P1. In this case,P11(t) is written as

By the Fourier transform, we obtain

whereωnm ≡ (En - Em)/p. In the limit of ε f 0, the imaginary
part of Πε11(ω) is known to result in the spectral correlation
function.48 In the present paper, however,ε is retained to be
finite. It is useful to notice that sum rules

and

hold. These sum rules and the present choice of the projection
operators lead to

whereN is the total number of quantum states. It follows that
Πε(ω) is written as

From eqs 37 and 44,Kh ε is given by

wherekε ≡ ε(N - 1)(1 - εΠ0)/(NεΠ0 - 1) andΠ0 ≡ Πε11(0).
It follows from eq 40 that

In the second equality we used the propertyωnm ) -ωmn. Since
∑n an ) 1 holds, the spectral intensity,an, can be written as

whereδn represents fluctuation ofan satisfying∑n δn ) 0. This
leads to

whereσ′ represents the standard deviation divided by the mean
value:

In consequence, we obtain

where

By use of eq 50, we can estimate the value ofkε from the
spectroscopic data, i.e., the spectral intensity,an, and the energy
position,En.

We examine the behavior ofkε in the limits of ε f 0 andε

f ∞. The Taylor expansion ofkε in eq 50 with respect toε
leads to the expression ofkε for small ε:

In order to examine the limit ofε f ∞, εΠ0 is expanded in 1/ε
as

where we used the normalization of the spectral intensities,∑n

an ) 1. It follows that

Equations 52 and 54 indicate thatkε takes a nonzero value when
ε is finite. In short, the secular part is shown to exist when the
convergence parameterε is retained to be finite. In the next
section, theε dependence ofKh ε is discussed on the basis of
model systems.

5. Examples

5.A. Hierarchical Picket Fence Model. In the present
subsection, we consider the level structure

I(E) ) ∑
n

anδ(E - En) (38)

P11(t) ) |〈φ0|e-iHt/p|φ0〉|2 ) |∑
n

ane
-iEnt/p|2 (39)

Πε11(ω) ) ∑
n

ian
2

ω + iε
+ ∑

n*m

ianam

ω - ωnm + iε
(40)

∑
k

Pjk(t) ) ∑
k

Tr{PkPj(t)} ) Tr{(∑
k

Pk)Pj(t)} ) nj (41)

∑
j

Pjk(t) ) Tr{Pk(∑
j

Pj(t))} ) nk (42)

P(t) ) (P11(t) 1 - P11(t)
1 - P11(t) P11(t) + N - 2) (43)

Πε(ω) ) (Πε11(ω) i
ω + iε

- Πε11(ω)

i
ω + iε

- Πε11(ω)
i(N - 2)
ω + iε

- Πε11(ω) ) (44)

Kh ε ) Xε(0) ) -p2
εn + p2nΠε(0)-1n ) p2kε( 1 -1

-1 1) (45)

Π0 )
1

ε
∑

n

an
2 + ∑

n*m

ianam

iε - ωnm

)
1

ε
∑

n

an
2 + ∑

n*m

εanam

ε
2 + ωnm

2
(46)

an ) N-1 + δn (47)

∑
n

an
2 ) N-1 + N-1σ′ 2 (48)

σ′ ≡ (1

N
∑

n

δn
2)1/2

/N-1 (49)

kε ) ε
(N - 1){1 - N-1(1 + σ′ 2) - Σε}

σ′ 2 + NΣε

(50)

Σε ≡ ∑
n*m

ε
2anam

ε
2 + ωnm

2
(51)

kε ) ε
1

σ′ 2
(N - 1)(1 - 1 + σ′ 2

N ) + o(ε3) (52)

εΠ0 ) ∑
n

an
2 + ∑

n*m

anam

1 + (ωnm/ε)2
)

1 - ∑
n*m

anam(ωnm

ε
)2

+ o(1

ε
2) (53)

kε )
1

ε
∑
n*m

anamωnm
2 + o(1

ε
3) (54)
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wheren1 ) 1, 2,...,N1 andn2 ) 1, 2, ...,N2, and we assume
that N1D1 , D2. This level structure involves two different
level spacings,D1 andD2. Such structure is called hierarchical
structure and is known to give rise to dynamics involving
motions of two different time scales.15

In order to obtainkε (eq 50), it suffices to estimateΣε (eq
51). We assume that the contributions fromδn terms (see eq
47) approximately cancel with each other. Under this ap-
proximation we obtain

Here, we usedN1D1 , D2, N1 . 1, andN2 . 1. It is useful to
define a function

Approximating the sum by integration (see Appendix G), we
obtain

The functionsN(x) can be approximated as

By substituting eqs 56 and 58 into eq 50, we obtain

By the use of eq 59, theε-dependence ofkε can be summarized
as

A significant point is thatkε can be regarded as constant in the
regions ofD1 , ε , N1D1 andD2 , ε , N2D2. In other words,
kε is insensitive to the artificial parameterε. This indicates that
the master equation has a robust physical meaning. In Figure
1a,kε (eq 60) is plotted, in which the parametersN1 ) 50, N2

) 500,D1 ) 1.0, D2 ) 5.0 × 102, andσ′ ) 1.0 are adopted.

The graph exhibits a plateau in the region ofε ) 1.0∼10.0.
This agrees with the prediction of eq 61 thatkε is constant in
the region ofD1 , ε , N1D1. In the region ofD2 < ε <
N2D2, however,kε does not completely become constant. This
is because the approximations used in eqs 59 and 61 are not
sufficiently good for the present choice of the parameters.

The ε dependence ofkε and its physical contents can be
summarized as follows: In the limit ofε f 0, the dynamics
strictly follows the reversible quantum mechanics, and therefore,
kε vanishes. In short, no secular part exists in the limit ofε f
0. Whenε is as large as the smallest energy-level spacingD1,
the bunches of quantum states work as quasicontinua, and the
recurrences of the longest time scale are suppressed. In
consequence,p(t) comes to have the secular partpj(t). Particu-
larly when the energy level has a hierarchical structure, there
exists the regime where the magnitude ofkε is insensitive toε.
In this regime,pj(t) and the master equation have a robust
physical meaning, and we can define the entropySh(t) (eq 32)
as a measure of IVR. Whenε is so large that the damping
factor e-εt affects the dynamics of short time scales, the
information carried in the memory kernel is lost, andkε looses
its physical meaning as is implied by vanishingkε in the limit
of ε f ∞.

5.B. Coupled Harmonic Oscillator Model. In this subsec-
tion, we examinepj(t) andSh(t) as well as theε dependence of
Kh ε on the basis of a coupled harmonic oscillator model. The
Hamiltonian is given by

Figure 1. (a) kε given in eq 60. The graph exhibits a plateau in the
region of 1< ε < 50. (b)Kh ε11<equation:some202>> of the model in
section 5B. The graph exhibits a plateau in the region of 0.001< ε <
0.005.

H ) 2a†a + b†b + ú(a† + a)(b† + b)2 (62)

En1n2
) pD1n1 + pD2n2 (55)

Σε
P )

1

(N1N2)
2

∑
(n1m1)*(n2m2)

ε
2

ε
2 + {D1(n1 - m1) + D2(n2 -m2)}

2

=
N2

(N1N2)
2
∑

n1*m1

ε
2

ε
2 + D1

2(n1 - m1)
2

+

N1
2

(N1N2)
2
∑

n2*m2

ε
2

ε
2 + D2

2(n2 - m2)
2

(56)

sN(x) ≡ 2

N2
∑
n)1

N

∑
m)1

n-1 1

1 + (n - m)2/x2
(57)

sN(x) =
2x
N

tan-1 (xN - 1

x2 + N) - (x
N)2

ln (x2 + N2

x2 + 1 ) (58)

sN(x) = {(2/N)x2 x , 1
(π/N)x 1 , x , N

1 - (N2/6x2) N , x
(59)

kε ) ε

1 - (N1N2)
-1(1 + σ′ 2) - { 1

N2
sN1( ε

D1
) + sN2( ε

D2
)}

σ1/2

N1N2
+ 1

N2
sN1( ε

D1
) + sN2( ε

D2
)

(60)

kε = {(N1N2/σ′ 2)ε ε , (1/π)D1σ′ 2 < D1

(N1N2/π)D1 D1 , ε , N1D1

N2ε N1D1 , ε , D2

N2D2 D2 , ε , N2D2

(N1D1)
2/6ε N2D2 , ε

(61)
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wherea andb are boson annihilation operators. The parameter
ú ) 0.0002 is adopted. The energy level of the present
Hamiltonian has a hierarchical structure.49 The initial state is
chosen as|φ0〉 ) 2-1/2(|0, 18〉 + |0, 19〉), where|Va, Vb〉 denotes
the eigenstate of the uncoupled two-dimensional harmonic
oscillator, H0 ) 2a†a + b†b. The projection operators are
chosen asP1 ) |φ0〉〈φ0| and P2 ) 1 - P1. By numerical
calculation using 156 basis states,P(t), Πε(ω), Xε(ω), Kh ε, pj(t),
andSh(t) are obtained.

Figure 1b showsKh ε11 as a function ofε. A plateau is seen
in the region ofε ) 0.001∼0.01. By settingε ) 0.002 (at the
middle of the plateau),pj(t) is calculated. Figure 2a showspj1(t)
as a function oft together withp1(t). It can be seen that the
secular decrease ofp1(t) is nicely represented bypj1(t). Figure
2b shows the relative entropyS(t) (eq 1) and the secular entropy
Sh(t) (eq 32). AlthoughS(t) exhibits oscillation originating from
quantum dephasing,Sh(t) increases monotonically so as to
represent the secular increase ofS(t).

Figure 1b shows thatKh ε11 reaches a maximum atε ) 0.9.
The maximum value ofKh ε11 also has a physical meaning. It is
the maximum possible decay rate ofpj1(t). If we chooseε )
0.9 (at the maximum ofKh ε11), pj1(t) decays quickly, mimicking
the fast fall-down ofp1(t) in the shortest time scale. In this
choice ofε, even the fastest dephasing is treated as a recurrence
to be disregarded. In short, the maximum ofKh ε11 is also
physically meaningful, although it is practically useless in this
particular example from the chemical point of view. The
existence of the plateau indicates the existence of dynamics of
long time scale other than the fastest dephasing.

5.C. Model of Sequential IVR. In this subsection, a
prototypical model of sequential dynamics is discussed. The

initial bright state,|φb〉, is coupled to a doorway state,|φd〉, with
a coupling matrix element,〈φb|H|φd〉 ) 2.0. The zeroth-order
energies of|φb〉 and|φd〉 are set equal to zero; i.e.,〈φb|H|φb〉 )
〈φd|H|φd〉 ) 0. The doorway state is coupled with 250 dark
states,|φn〉 (n ) 1, 2, ..., 250), which are distributed with equal
spacing, i.e.,〈φn|H|φn〉 ) 0.04(n - 124.5). We adopt the
coupling matrix element,〈φd|H|φn〉 ) 0.05, which is independent
of n. The interaction between|φb〉 and|φn〉 (n ) 1, 2, ..., 250)
is set equal to zero. We adopt the projection operators,P1 )
|φb〉〈φb|, P2 ) |φd〉〈φd|, andP3 ) ∑n|φn〉〈φn|.

By numerical calculation,Kh ε11 is found to have a maximum
at ε ) 0.025, to which the value ofε is fixed in the following
calculation. In the present model,Kh ε is a 3× 3 matrix and is
capable of describing the decay containing two different
components, i.e., from|φb〉〈φd| and from|φd〉 to the dark states.
This is a reason whyKh ε11 does not have any plateau in contrast
to the example in the preceding subsection. The secular part
pj(t) is plotted in Figures 3a,b and 4a together withp(t). The
former successfully extracts the long time behavior of the latter.
The secular parts,pj1(t), pj2(t), and pj3(t), exhibit typical time
dependence of “successive reaction”. The population of the
initial state (|φb〉) is transmitted to the “reaction intermediate”
(|φd〉) and then the “final product” (the dark states) gradually

Figure 2. (a) Occupation probabilityp1(t) (thin line) and secular part
pj1(t) (broken line) of the model in section 5B. (b) Relative entropy
S(t) (solid line) and secular entropySh(t) (broken line) of the model in
section 5.B.

Figure 3. (a) Occupation probabilityp1(t) (thin line) and secular part,
pj1(t) (thick line) of the model in section 5C. (b)p2(t), pj2(t), p3(t), and
pj3(t) of the model in section 5C. (c) Relative entropyS(t) (thin line)
and secular entropySh(t) (thick line) of the model in section 5C.
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grows. The secular motion of quantum dynamics is shown to
result in the behavior well-known in the macroscopic chemical
kinetics.

The relative entropy,S(t), and the secular part,Sh(t), are shown
in Figures 3c and 4b. The latter nicely describes the secular
increase of the former. In the short time scale,t ) 0∼0.003,
Sh(t) increases quickly. It represents the fast transition from|φb〉
to |φd〉. The gradual increase ofSh(t) in the long time scale
corresponds to the slow dissipation into the dark states. In short,
the secular entropy increases by two different production rates,
each of which corresponds to each step of the sequential
dynamics of the present model, i.e., from|φb〉 to |φd〉 and from
|φd〉 to the dark states.

6. Discussion

In sections 4 and 5,Kh ε is estimated on the basis of the spectral
positions and intensities, both of which can be obtained
experimentally. It should be noted thatKh ε is obtained from
the zero-frequency part ofΠ(ω). As can be seen in eq 46, small
spacingωnm has a larger contribution toΠ0 and thus toKh ε.
The data based on the spectrum of less than perfect resolution
are, therefore, liable to cause error. The circumstance is parallel
to the case of radiationless transition, where the rate is
determined by the density of states. In short, missing peaks
may harm the accuracy of the estimation even if their intensities
are weak.

No mathematical reasoning can lead to a criterion for the
choice of the damping parameterε. The criterion should be
derived on the basis of physical insight. An important point is
thatKh ε has a maximum as a function ofε (see Figure 1) in all
the cases discussed in section 5. The maximum value ofKh ε

corresponds to the maximum possible decay rate and has a
robust physical meaning. In the case of section 5C, where the
Hilbert space is partitioned into three subspaces, the maximum
value of Kh ε is shown to describe correctly the sequential
dynamics of the system. In the cases of sections 5A and 5B,
where the Hilbert space is partitioned into two subspaces, the
maximum value ofKh ε corresponds to the time scale of the fastest

dephasing. In these cases, the time scale of interest concerning
IVR can be obtained at the plateau ofKh ε. The behavior ofKh ε

depends on both the dynamics of the system and the choice of
projection. The appropriate value ofε can be obtained at either
maximum point or plateau part, i.e., at nearly stationary point,
depending on the cases.

Such stationary points arise from the hierarchical structure
of molecular spectra as demonstrated in section 5A. The
hierarchical structure gives rise to the separation of time scales
of different dynamics, and the latter enables us to neglect the
recurrence, i.e., the dynamics of the longest time scale, without
affecting the IVR dynamics of interest. If there is no hierarchi-
cal structure,Kh ε indicates merely the time scale of the shortest
dephasing. In short, the neglect of recurrence is justifiable when
the IVR is stepwise and the molecular spectrum possesses a
hierarchical structure.

7. Summary

For the purpose of acquiring a measure of IVR, the quasi-
irreversibility in the quantum dynamics is discussed. It is shown
in the present paper that the quantum-mechanical time evolution
of the occupation probability,p(t), obeys a generalized master
equation (eq 15) having a non-Markovian memory kernel.

A Markovian limit of the generalized master equation is
discussed by analyzing the long-time behavior ofp(t) on the
basis of the renormalization-group method. We define the
secular partpj(t), which obeys a Markovian master equation (eq
31). The secular entropySh(t) (eq 32) is defined by use ofpj(t).
It follows that Sh(t) is a monotonically increasing function of
time. It is a property desirable for a measure of IVR.

The Markovian master equation forpj(t) has a physical
meaning when the quantum recurrences in the memory kernel
are suppressed by the damping factor e-εt. In the limit of ε f
0, in which the strictly reversible quantum mechanics governs,
the transition matrix of the master equation is shown to vanish.
Also in the limit of ε f ∞, the master equation looses its
meaning simply because the dynamical information carried in
the memory kernel is lost in this limit.

The ε dependence is analyzed on the basis of model
calculations. It is found that the system exhibiting a hierarchical
level structure gives rise to a master equation insensitive to the
value ofε. The ε dependence clarifies the mechanism giving
rise to the quasi-irreversibility. Numerical calculation based
on model Hamiltonians is carried out, andpj(t) andSh(t) are found
to represent successfully the secular bahavior ofp(t) andS(t),
respectively, when the damping parameterε is kept finite. The
retention of the damping parameter is best justified in the case
of sequential IVR. A model of sequential IVR (section 5C)
shows that the secular motion of quantum dynamics follows
the macroscopic chemical kinetics. The secular entropy mono-
tonically increases by different production rates, indicating two
different time scales of IVR. In conclusion, the secular
dynamics derived on the basis of the renormalization-group
method well describes quasi-irreversible dynamics embedded
in IVR, and thereby, the measure of IVR is obtained.
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Appendix A: Proof of Equation 6

The left-hand side of eq 6 satisfies the differential equation

and the boundary condition ei(A+B)t/p|t)0 ) 1. On the other hand,
the right-hand side of eq 6 is also shown to satisfy the same
differential equation as

At t ) 0 the right-hand side of eq 64 results in 1. Accordingly,
the left- and right-hand sides of eq 6 both satisfy the same first-
order differential equation with the same boundary condition,
and hence, they are identical with each other.

Appendix B: Derivation of Equation 18

By use of the relation

eq 12 multiplied with e-εtθ(t) in both sides leads to

By use of the inverse transformation of eqs 16 and 17, eq 66
can be written as

which leads to

From the definition, it follows thatP(0) ) n. Elementary
algebra leads to eq 18.

Appendix C: Derivation of Equation 19

The assumption [H0,Pj] ) 0 leads toL|Pj) ) [H0 + λV,Pj] )
λ[V,Pj] ≡ λL1|Pj) and that (Pj|L|X) ) Tr{Pj[H0 + λV,X]} )
λTr{X[Pj,V]} ) λ(Pj|L1|X), whereX is an arbitrary operator.

By use of above relations, we obtain

Thus, it is shown thatK (t) ∼ o(λ2).

Appendix D: Derivation of Equation 20

We expandp(t) in the power series ofλ2 asp(t) ) p(0)(t) +
λ2p(2)(t) + o(λ4). Substituting this into eq 19, we obtain

From the terms on the order ofλ0, we obtainp3 (0)(t) ) 0, which
immediately leads top(0)(t) ) p(0). From the term on the order
of λ2, we obtain

which leads to

From this andp(0)(t) ) p(0) obtained above, we obtain eq 20.

Appendix E: Proof of the Detailed Balance Condition of
Equation 31

We begin with showing the symmetry of the matrixP(t). By
definition Pjk(t) is given by

where |n〉 is the eigenstate ofH and En is the corresponding
eigenvalue. WhenH is real symmetric, we can choose the basis
states so that〈jµ|n〉 is real. It can easily be seen from eq 73
thatPjk(t) ) Pkj(t) when〈jµ|n〉 is real. Symmetry ofP(t) leads
to symmetricΠ(ω) (see eq 16), symmetricX(ω) (see eq 18),
symmetricK (t) (see eq 17), symmetricJ(t) (see eq 21), and
finally symmetricKh (see eq 22). The symmetry ofKh gives
rise to the detailed balance condition as

Appendix F: Proof of Equation 36

By definition Πkj(ω) is expressed as

Kjl(t) ) (Pl/L e-i(1-P )L t/p(1 - P )L |Pj)

) λ2(Pl|L1e
-i(1-P )L t/p(1 - P )L1|Pj) (69)

p3 (0)(t) + λ2p3 (2)(t) + o(λ4) )

- λ2

p2∫0

t
dt1 K (t1)n

-1p(0)(t - t1) + o(λ4) (70)

p3 (2)(t) ) - 1

p2∫0

t
dt1 K (t1)n

-1p(0)(t - t1)

) - 1

p2
{∫0

t
dt1 K (t1)}n-1p(0) (71)

p(2)(t) ) - 1

p2
{∫0

t
dt1 ∫0

t1 dt2 K (t2)}n-1p(0) (72)

Pjk(t) ) ∑
λ)1

nk

∑
µ)1

nj

|〈kλ|e-iHt/p|jµ〉|2 )

∑
λ)1

nk

∑
µ)1

nj

|∑
n

〈kλ|n〉〈jµ|n〉*e-iEn/p|2 (73)

Wjknk ) - λ2

p2
Kh jk ) - λ2

p2
Kh kj ) Wkjnj (74)

d
dt

ei(A+B)t/p ) i
p
(A + B)ei(A+B)t/p (63)

d
dt[eiAt/p + i

p
∫0

t
dt′ ei(A+B)(t-t′)/pBeiAt/p]

) i
p
AeiAt/p + i

p
BeiAt/p +

i
p
∫0

t
dt′ i

p
(A + B)ei(A+B)(t-t′)/pBeiAt′/p

) i
p
(A + B)[eiAt/p + i

p
∫0

t
dt′ ei(A+B)(t-t′)/pBeiAt′/p] (64)

d
dt

e-εtθ(t)P(t) ) δ(t)P(0) - εe-εtθ(t)P(t) + e-εtθ(t)
d
dt

P(t)
(65)

d
dt

e-εtθ(t)P(t) ) δ(t)P(0) - εe-εtθ(t)P(t) -

1

p2∫-∞

∞
dt′ e-εt′θ(t′)K (t′)n-1e-ε(t-t′)θ(t - t′)P(t - t′) (66)

1
2π∫-∞

∞
dω e-iωt(-iω)Πε(ω) )

1
2π∫-∞

∞
dω e-iωt[P(0) - εΠε(ω) - 1

p2
Xε(ω)n-1Πε(ω)] (67)

-iωΠε(ω) ) P(0) - εΠε(ω) - 1

p2
Xε(ω)n-1Πε(ω) (68)
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It follows that

which leads to

Appendix G: Derivation of Equation 58

After rearrangement of the running suffixes ton+ ≡ n + m
andn- ≡ n - m, the summation is approximated by an integral
as

Further reduction by elementary algebra leads to eq 58.
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n)1

N

∑
m)1

n-1 1

1 + (n-m)2/x2

)
2

N2
∑

n-)1

N-1 1

1 + (n-
2/x2)

2N - 2n-

2

) 2 ∑
n-)1

N-1 1

N

1 - (n-/N)

1 + (N/x)2 (n-/N)2

= 2∫1/N

1
dê 1- ê

1 + (N/x)2ê2

) 2[x
N(tan-1 N

x
- tan-1 1

x) - x2

2N2
ln

x2 + N2

x2 + 1 ] (78)
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